
Scaling and Availability of RunSignUp.com to Support Large

Registration Bursts

Stephen Sigwart

RunSignUp.com

info@runsignup.com

Tuesday 29

th
January, 2013

Abstract

A common problem many websites face is having a
large burst of tra�c. This paper discusses how Run-
SignUp solved this problem in detail so that other
development teams can learn from our experiences to
leverage cloud deployment to solve their own scaling
problems.
For many of the larger road races, there is a limit on

the total number of runners who can register. This
leads to a massive influx of online registrations as
soon as registration for the race has opened. For
races that accept 30,000 to 50,000 participants, this
requires a highly optimized and highly scalable in-
frastructure with hundreds of servers and a code base
that takes advantage of multiple tiers of specialized
load balancers, caching, queues, and other technolo-
gies to handle the tra�c. Furthermore, the registra-
tion website needs to interact with external services,
such as payment processors, to complete each regis-
tration.
It would be economically infeasible to build a

static infrastructure capable of handling this traf-
fic since servers would be idle on non-peak hours.
Infrastructure-as-a-Service (IaaS) providers, such as
Amazon Web Services (AWS) [1], provide a cost-
e↵ective solution by allowing customers to rent
servers and use other cloud services on-demand. This
allows an online registration service to rent extra

servers to handle the burst in registrations, while run-
ning on a more modest infrastructure when the load
is low.

While online registration systems should be able to
scale to handle the current tra�c, they also need to
be highly available. To that end, IaaS providers can
also provide physical separation of servers and ser-
vices, allowing for an infrastructure that can with-
stand failures of multiple servers. Our registration
system, RunSignUp.com, uses AWS to provide both
scalability and availability to online race registration.

This paper describes the process of converting
a single-server website into a scalable and highly-
available multi-server architecture. It is written for
a developer tasked with the job of converting an ex-
isting system to handle large tra�c bursts and heavy
write loads on common objects. It first introduces
some applications and services that were used in our
infrastructure and addresses the steps to move to
a cloud architecture, including details on making it
highly-available. Next, it discusses the use of caching
and a few other techniques to gain performance and
make the website more scalable. After this, the pa-
per describes how we handle server management and
a load testing framework to benchmark our system.
Finally, we present the final performance that we
achieved after making these updates.

1

1 Migrating to a Multi-Server
Infrastructure using EC2

RunSignUp was founded in 2009 with the goal of pro-
viding a simple and easy experience for both race di-
rectors and runners. The first few years were spent
building the business and incrementally adding fea-
tures needed by large races. However, the website
was not initially designed to be highly scalable, so
the next steps were to build a robust infrastructure
that not only could handle large numbers of trans-
actions per second, but also was resilient to server
failures.
The first task in our project was migrating the sys-

tem from our existing single server architecture to a
cloud architecture taking advantage of the services
provided by AWS [1], primarily the Elastic Compute
Cloud (EC2) [2]. We made use of Amazon Virtual
Private Cloud (VPC) [3] to provide an isolated en-
vironment with our own private IP address alloca-
tion and subnets. Our infrastructure can be seen in
Figure 1. The components of the infrastructure will
be discussed in a mostly top-down fashion. First,
though, a quick background on caching is required.

1.1 Caching Basics

One of the fundamental goals of our scalability
project was to reduce the load on our database server.
This is because the database server is restrained to
a single server and therefore becomes a bottleneck.
By caching data, fewer accesses to the database are
needed.
This caching is achieved through memcached [4]

and APC [5] caches. Both of these caches are
memory-based, key-value systems that allow you to
store and retrieve values by a key. This makes reads
and writes very fast compared to the database, but
are volatile, meaning that the data they store should
be able to be rebuilt from the database if needed.
Memcached and APC cache di↵er primarily in size

and accessibility. The memcached application runs
on a separate server, where all web servers share the
cache and can manipulate the data. APC cache is a
per web server cache implemented as a shared mem-

ory segment that is much quicker since it is on the
same server, but lacks the ability to share data with
other web servers. This means that APC is faster,
but much smaller than memcached. It also makes
APC non-applicable for keys that need to be shared
across web servers. Ideally, we would like to access
data first in APC, then in memcached, and lastly in
the database as shown in Figure 2.

APC Cache APC CacheAPC Cache APC Cache

Memcached Memcached

Database

Size Speed

Figure 2: Caching Hierarchy

1.2 Domain Name Lookup - Route 53

When a user first accesses RunSignUp via our run-
signup.com domain name, the user’s browser contacts
Amazon Route 53 [6] to determine where to send the
request. Route 53 is the DNS service that handles
the runsignup.com domain name. Route 53 is set
up with weighted type-A records for runsignup.com,
meaning that one of several IP addresses is returned
in a round-robin fashion. Currently, there are six IP
addresses associated with the runsignup.com type-A
record.

1.3 Load Balancing - Nginx & NAT

Once the user has an IP address, their browser sends
the request to the returned IP address, which will be
one of multiple load balancers. Each load balancer
runs Nginx [7], a web server that acts as a reverse
proxy. Nginx simply proxies the request to the back-
end web servers which actually execute the request.
Since the load balancers are the only servers in this
infrastructure with a public IP address, the servers
also acts as a NAT server [8] for all other servers.
This helps to make the internal servers more secure
while still allowing the internet access they require.

2

Amazon Route

53

Availability Zone East-1B

Web Servers

Amazon Simple

Email Service (SES)

Amazon Simple

Queue Service (SQS)

runsignup.com

Internet

192.168.0.0/24

192.168.1.0/24

Amazon CloudFront

S3

Amazon Relational

Database Service

(RDS)

Availability Zone East-1A

Web Servers

192.168.3.0/24

192.168.100.0/24

Users

Session Memcached Session Memcached Data MemcachedData Memcached

Load Balancers
Load Balancers

Figure 1: Final Infrastructure

3

1.4 Web Servers - Apache & PHP

The Nginx load balancers essentially forward requests
to our Apache [9] backend web servers. These servers
run PHP to process the requests and handle all of the
logic associated with requests. While processing, the
web server needs to communicate with many other
servers and external services to satisfy the request.

1.5 Session Memcached

Since there are multiple web servers, the typical file-
based session storage does not work. Instead, the
session data needs to be stored in a shared location.
This is achieved by using a custom session handler
that stores the session data in memcached servers.

1.6 Data Memcached

To support data caching, we run multiple memcached
servers reserved for application data. Frequently used
data from the database is stored on these servers.
This allows for quicker access to data and reduces
the load on the database server. Data and sessions
are stored on separate servers to eliminate risks asso-
ciated with this setup. Firstly, it prevents data from
accidentally overwriting sessions. Secondly, it allows
the data caches to be flushed if needed without losing
sessions.

1.7 Sending E-mail in Amazon Web
Services - SES & SQS

The move to AWS required a change to the way e-
mails were delivered. Instead of using SMTP, we
switched to Amazon Simple Email Service (SES) [10].
However, SES places limits on both the total number
of e-mails in a 24 hour period and the maximum num-
ber of e-mails per second. As such, all e-mails were
added to a Simple Queue Service (SQS) queue [11].
SQS is a service to queue messages that will be pro-
cessed by separate processes. The primary web server
runs a PHP process that monitors this queue and
sends e-mails without overstepping the e-mail limits.

1.8 MySQL Database - RDS

The MySQL database server is run using Amazon’s
Relational Database Service (RDS) [12]. This pro-
vides the benefits of the MySQL database with less
overhead of configuration and maintenance, which
is handled by Amazon. Furthermore, it simplifies
the creation and maintenance of Read-Replicas, a
MySQL feature that is very useful for scaling read
operations.

1.9 Serving Static Resources - S3 &
CloudFront

Most of the static resources on RunSignUp are stored
in Amazon Simple Storage Service (S3) [13] and de-
livered to the user via Amazon CloudFront [14]. Both
of these can be seen at the top right of Figure 1. S3 is
a service for storing files in the Amazon cloud, pro-
viding redundant storage and essentially unlimited
space. CloudFront is a Content Delivery Network
(CDN) service that delivers additional resources to
users via a globally distributed network of servers.
The static resources served via CloudFront include

CSS stylesheets, images, and JavaScript used on the
website along with resources uploaded by race direc-
tors, such as race logos, sponsor logos, and registra-
tion PDFs. By using CloudFront to serve these files,
we drastically reduce the number of page requests to
our servers. For some pages, this reduced the number
of HTTP requests to our web servers from 25 requests
to a single request, a 96% improvement.
To accomplish this, all static resources were placed

in a specific directory. The code was updated to call
a function whenever a static resource was required.
For local development, this simply returned the loca-
tion of the file, so local development is not hampered.
However, for our production system, it mapped file-
names to CloudFront URLs.

1.9.1 Generating the Static Resource Map

The map is generated during the deployment process,
which checks for any updated resources and pushes
them to S3. The filename that we use for S3 includes
a few extra characters based on the modified time of

4

the file. This is for cache busting purposes, allow-
ing the files to be locally cached by browsers while
ensuring that stale versions of files will not be used
when a file is updated. It then generates and stores
the map for later use. For files that could not call the
function to get the map, such as CSS stylesheets and
JavaScript files, the deployment script scans the files
and updates them to point directly to the CloudFront
URLs.

1.10 Deployment

In order to quickly deploy new code to all of the web
servers, there is a deployment script on our develop-
ment server. In the deployment script, we utilized a
GitHub [15] repository to store the code that should
be loaded onto each web server. Once the initial
processing is completed, such as updating static re-
sources, the script starts a process on each of the web
servers to do the deployment. Each web server up-
dates its local copy of the same repository and runs
the deployment script found in the repository. This
setup allows for a quick deployment without putting
a heavy load on our development server. Further-
more, the script ensures that existing resources (e.g.
images, CSS stylesheets, and JavaScript) that will be
updated are not deleted until after the new resources
are in S3, ensuring that the deployment is transpar-
ent to users.

1.11 Typical Server Setup

Table 1 shows the typical infrastructure running on
a daily basis. The server sizes listed are defined by
EC2, with an m1.small server roughly 1/4th the size
and cost of an m1.large server. During periods of high
system load, the size and number of load balancers
and web servers can be increased. While the num-
ber of memcached servers is not as easy to change
frequently, the size of the servers can be easily and
quickly changed.

1.12 Server Management

In order to keep our costs low, it is not practical
to have the system set up to handle the high load

Server Type Server Size Servers
Load Balancers (Nginx) m1.large 2
Web Servers (Apache) m1.large 2
Session Memcached m1.small 8
Data Memcached m1.small 8

Table 1: Infrastructure on a Typical Day

all the time. All of the servers would be severely
underutilized. Therefore, we take advantage of the
cloud to use smaller and fewer instances the majority
of the time. When we know that a large race will be
opening registration, we update the infrastructure to
handle the load. To do this, we built several scripts
and user interfaces to do the majority of the work.

1.12.1 Load Balancers

Typically we run two m1.large load balancers that
double as NAT servers for other servers on our private
network. The runsignup.com domain name currently
resolves to one of 6 IP addresses. Hence, each load
balancer is assigned 3 of these IP addresses.
There is a UI that lists the running load balancers

and allows us to start more load balancers or stop
running load balancers. When a load balancer is
added, the scripts will wait until the server is ready
and then assigns it an IP address and set up route
tables to route NAT packets though it. When a load
balancer is stopped, the script first assigns its IP ad-
dress and route table to another load balancer. Fur-
thermore, the UI allows us to change the instance
type of a running server to use a smaller or larger
server. Since the server must be shutdown to do this,
it will follow the steps to stop it, change the instance
type, then follow the steps to start it again.

1.12.2 Web Servers

During normal workload, there are two m1.large web
servers running in separate availability zones. The
load balancers evenly distribute incoming web traf-
fic to these servers. They have no public IP address,
which makes them less susceptible to attack. How-
ever, it also means that they need to use the load
balancers as a NAT server to reach external services,

5

such as other Amazon services and our payment gate-
way.
Prior to a large race opening, the number of web

servers needs to be increased to handle the increased
load. We have a UI that lists our running and stopped
web servers, allowing us to easily select specific in-
stances or groups of instances to start or stop. If
we need more instances than are currently created
in EC2, there is a field specifying how many new in-
stances need to be created and the script will handle
the cloning and set up of new web servers. When
web servers are added or removed, we need to notify
the load balancers so they can adjust their list of web
servers. This is accomplished using Amazon’s Simple
Notification Service (SNS) [16], which reliably sends
notifications of added and removed IP addresses to
each of the load balancers. These scripts allow us to
quickly and easily go from two web servers to hun-
dreds of web servers in a matter of minutes.
Furthermore, there are times when we may

want to adjust the instance type of the web
servers to be a more powerful server. There is
a command line script that helps us to quickly
convert the instance type of all stopped web
server instances. This came in handy when doing
our load testing by allowing us to experiment
with various instance types. This script is avail-
able at https://github.com/RunSignUp-Team/
OpenSource/blob/master/serverManagement/
changeWebServerInstanceTypes.php.

1.12.3 Memcached Servers

Our infrastructure uses two sets of memcached
servers, one to store user sessions and the other to
store arbitrary data. As seen in Table 1, the infras-
tructure uses 8 m1.small servers of each type instead
of 2 m1.large servers of each type. There are two
big advantages to this setup. First, the network traf-
fic to each server should be around a factor of four
less than with the initial setup. Secondly, it allows
for more scaling possibilities since each server can be
upgraded to larger instance types.
The problem was to figure out how to auto-

matically switch these instance types without
losing data and without disrupting users. For

the data servers, data loss is acceptable since the
information can be rebuilt from the database.
However, for the session servers, data loss is un-
acceptable. For this, we wrote a command line
script that does the conversion. This script can be
found at https://github.com/RunSignUp-Team/
OpenSource/blob/master/serverManagement/
changeMemcachedInstanceTypes.php.

The conversion process first locates all the mem-
cached instances of a given type that need to be up-
dated, which currently is 8 instances. For every run-
ning memcached server, there is another stopped in-
stance that can be used as its replacement. The pro-
cess for changing the instance type of a memcached
server is as follows:

1. For each stopped memcached instances of this
type.

(a) If needed, change the instance type.

(b) Start the server.

2. For each running memcached server of this type.

(a) Reassign the private IP addresses to one of
the newly started servers.

(b) Shut down the server.

For the session storage servers, we add in a cou-
ple of extra steps. First, the memcached-tool util-
ity is used to dump the contents of memcached just
as the private IP address is switched. This dump
file is copied to the new server and used to rebuild
memcached with the session data from moments be-
forehand. Even though there is a very small chance
that a few pieces of this data could be outdated, our
custom session handler will recognize this and use
the up-to-date data from another server since session
data is duplicated. Therefore, on the next request
for a given session, the server will be updated to the
current session information. This process helps to
maintain session information so that user disruption
is minimized.

6

https://github.com/RunSignUp-Team/OpenSource/blob/master/serverManagement/changeWebServerInstanceTypes.php
https://github.com/RunSignUp-Team/OpenSource/blob/master/serverManagement/changeWebServerInstanceTypes.php
https://github.com/RunSignUp-Team/OpenSource/blob/master/serverManagement/changeWebServerInstanceTypes.php
https://github.com/RunSignUp-Team/OpenSource/blob/master/serverManagement/changeMemcachedInstanceTypes.php
https://github.com/RunSignUp-Team/OpenSource/blob/master/serverManagement/changeMemcachedInstanceTypes.php
https://github.com/RunSignUp-Team/OpenSource/blob/master/serverManagement/changeMemcachedInstanceTypes.php

2 Availability

To provide high-availability, our infrastructure is set
up to run in multiple availability zones (AZs) in EC2.
Each AZ is a data center in EC2 that is expected to
be isolated from failures in another AZ. As Figure 1
illustrates, our system always runs servers in at least
two availability zones.

2.1 Load Balancers

At all times, there is a load balancer running in
at least two availability zones. This means that if
one load balancer fails, the other load balancer will
take over for it and process the requests. This is
done using custom scripts written for the Nagios
[17] infrastructure monitoring software. When the
software detects that a load balancer is down, it
moves the IP address of the failed server to the
running server. Furthermore, it updates the packet
routing for any subnets that use the load balancer
as a NAT server. All future requests will be routed
to the running load balancer until the failed server
is restored. This script can be found at https:
//github.com/RunSignUp-Team/OpenSource/
tree/master/serverManagement/nagios.

2.2 Web Servers

The Apache web servers are also evenly distributed
across AZs to ensure that server failures are not vis-
ible to users. The load balancers constantly moni-
tor each web server and will stop proxying tra�c to
a server if it detects an error. This means that a
failed server will simple result in tra�c being routed
to the web servers that are still running. Once the
web server is running again, it will be automatically
detected by the load balancers and added back to the
server pool.

2.3 Memcached Servers

The memcached servers are distributed across AZs to
ensure that failure of one server does not eliminate all
caching in the system. PHP will detect failed servers
and remove them from the pool in the event of failure,

allowing caching to continue working. The Nagios
software is set up to send E-mail notifications in the
event of memcached failures. When we receive this
notification, we can fix the failed server or simply
start up a new server and associate the IP address
with this new instance.

2.4 Session Storage

We wrote a custom session handler in PHP that
uses memcached to store session information by a
key based on the user’s session ID. The session han-
dler stores the information, with a timestamp on
two memcached servers, both in di↵erent availabil-
ity zones. If one server fails, the user’s session is not
lost since it is still available on at least one server. If
the failed server becomes available again, but has out-
of-date session information, the timestamp is used to
decide on the proper session to use. This ensures that
session data is not lost in the event of server failure
or maintenance.

2.5 Database

The database uses Amazon’s Relational Database
Service with the Multi-AZ option. This ensures that
we have access to our data in the event of a failure in
one availability zone. The service is set up to quickly
fail over to a di↵erent availability zone in case the
primary server fails. This feature is available as a
simple option in RDS, with all the complexity han-
dled by Amazon, meaning more time can be spent on
the application instead of database configuration.

2.6 Amazon’s High-Availability Ser-
vices

Parts of our availability are based on the high-
availability provided by AWS. The combination of S3
and CloudFront allows the static resources on Run-
SignUp to be delivered to users from various servers
based on the user’s geographic location. Other crit-
ical services, such as SQS [11], are designed to be
highly-available, allowing us to focus more on Run-
SignUp than managing a custom queueing service.

7

https://github.com/RunSignUp-Team/OpenSource/tree/master/serverManagement/nagios
https://github.com/RunSignUp-Team/OpenSource/tree/master/serverManagement/nagios
https://github.com/RunSignUp-Team/OpenSource/tree/master/serverManagement/nagios

3 Performance Via Caching

The primary goal in making RunSignUp scalable was
to reduce the load on the database server. While
we are limited to a single database server, we can
have a large number of caching servers. We used two
levels of caching, memcached and APC cache. In
addition to application specific caching, PHP using
APC opcode caching, which caches PHP files to make
requests faster.

3.1 Caching Framework

To implement the data access hierarchy of Figure 2,
we developed classes to provide uniform access to the
caches. The getValue function is the cornerstone of
these classes. This function first attempts to get a
value from APC cache. In the event of a cache miss,
a request to memcached is made. If the key is found,
the function will decide whether the key should be
stored in APC cache, using a technique we refer to
as frequency-based cache promotion. To do this, it
uses memcached to increment a counter (once per
page load) with a few minute expiration time. If this
counter reaches a threshold parameter, the value will
be stored in APC for the next request. This allows
the code to use the faster APC cache for races that
are receiving more tra�c.
Furthermore, the getValue function has options

that will limit database calls during bursts, prevent-
ing an issue know as “data stampede”. Suppose a key
is not present in any of the caches, but several pro-
cesses attempt to get the key simultaneously. They
will all fail and go to the database get the value and
then store it in memcached. However, only one pro-
cess really needed to query the database. The other
processes could have waited for the first process to
store the value in memcached. The getValue func-
tion can do this by attempting to set a lock in mem-
cached if the key was not found. The process that
gets the lock will go to the database while the other
processes will do a quick sleep before trying the cache
again.
This caching is a big win for performance, but it

would be unacceptable for the race data to be out of
date. To solve this, we added functions to store values

with a timestamp. Other functions to get the value
from the cache check the value against a timestamp
to see if the value is valid. This allows us to quickly
update a timestamp for a race which will essentially
invalidate cache items for a race. For example, if a
race name is edited, we simply update the timestamp
in memcached. If we find a cache entry with a times-
tamp less than the updated time, it is discarded and
the new data is retrieved from the database.
Furthermore, the memcached class implements a

getOnce function, which will retrieve a value from
the cache only once, with all future requests returning
the same value. The class implements a cap on the
total amount of memory used for this purpose. This
function is particularly useful for timestamps, which
will be needed many times in a single page request.
For instance, there can be around 50 cache items for
a race, each of which might need to check the times-
tamp. Instead of fetching the timestamp from mem-
cached 50 times, it is fetched once and reused on later
calls.

3.2 Caching Race Information

The core race information in RunSignUp is created
and modified through a five step wizard. This infor-
mation includes basic race information such as name
and location; event information such as start times,
registration periods, pricing, and participant caps;
and any text content the race director wishes to in-
clude. All of this information is needed on the race
page, the entry point of most registrations for the
race. As shown in Figure 3, this page can contain
a large amount of data that must be retrieved from
the database. This particular page required over 50
database queries to build, which would not scale well
to heavy tra�c loads.
In order to reduce the database calls, we built a

profiling system that allowed us to see exactly which
database queries were needed for each page. Further-
more, it detailed the amount of time spent in various
portions of the code. Using this data, we system-
atically cache race information and optimized SQL
queries. The goal was to completely eliminate the
need to connect to the database for most users, thus
reducing the load on our database server.

8

Figure 3: Sample Race Page

Much of this information was static race informa-
tion that is modified by the race director and rarely
changes. This information was simple to cache by
just storing the data and using the race timestamp
as a cache invalidator. However, other pieces of data
were dynamic, such as the number of spots remain-
ing for races with participant caps. Before caching,
this information was retrieved by using a SELECT
COUNT(*) query and subtracting the result from the
participant cap. To eliminate this database call, we
stored a counter in memcached for each race event.
Anywhere that added or removed a registrant from
an event updated this value using the increment and
decrement memcached operations.

While an accurate number of participants is crit-
ical in determining if a user can register for a race,
it is not so critical in other areas. For example, this
information is simply displayed on the race page and
it is not critical that it be 100% accurate at all times.
Therefore, we used APC to cache the count (for view-
ing only) for 5 seconds. This helped to reduce the
load on the memcached servers, freeing them up for
access to more critical data.

Once we removed all database calls from the race
page, our tests revealed that we were still making un-
necessary connections to the database even though
no queries were executed. This was because our
database wrapper class was derived from the mysqli
PHP class. The constructor for mysqli established
a connection to the database immediately regard-
less of whether the connection was required. To rec-
tify this, we updated our wrapper such that it is no
longer derived from mysqli, but instead used PHP’s
call method overloading function [18] as shown in

Listing 1 in Appendix B. If a method is undefined,
PHP will call the call of the Database class, which
checks if the method is part of the mysqli class. If
so, a database connection is established when needed.
Otherwise, the code checks for the function in other
modules that we have loaded into the wrapper, mak-
ing it easier to separate our code.

9

3.3 Caching Registration Related In-
formation

While the race page contains mostly static informa-
tion which is relatively easy to cache, the registra-
tion process is more write oriented and deals with
constantly changing data, making caching more di�-
cult. Although much of this information was cached
from the race page, there was additional information
needed for the registration process, such as teams,
fundraisers, donations, and store items. Some of this
information, such as donation details and store items,
was fairly static and easily cached. However, the lists
of teams and fundraisers are frequently updated as
users register for races as a team or create a new
fundraiser. These lists were cached in a similar way
to all the other data, except that a very short (30
seconds to 1 minute) expiration was set on the cache
items. By doing this and using the locking scheme
previously mentioned, we were able to handle large
tra�c bursts without putting a large strain on the
database. Furthermore, limits on store items was
achieved through cached counters, much like the reg-
istration counts previously discussed.

3.4 Checking E-mail Address on New
Accounts

While this eliminated or reduced the number of
database calls for most of the information needed as
the user steps through the registration process, there
is other user-specific data that is needed from the
database. First, an unregistered user needs to cre-
ate a new account when registering for a race. This
means that we need to ensure that the e-mail address
provided is not already used on an existing account.
That means we need to make a database call, and
worse, we needed to use MySQL’s FOR UPDATE [19]
clause to ensure that no other user has registered the
same e-mail address between the time we checked the
database and inserted the new record. This type of
SQL statement results in row locks that could hurt
performance.
Our solution was to use a read-replica of the

database to check each individual address and use
the cache to store whether or not the e-mail address

was used. Future requests could use the cache, en-
suring that the read-replica is only accessed once for
each e-mail address. The cache is updated to reflect
when the e-mail address is actually used to create an
account.

Using read-replicas has the disadvantage of having
lag between when the master database is updated
and when the replica is updated. In this situation,
the lag does not cause issues because we update mem-
cached as we update the database. If an e-mail ad-
dress is not in the database, it will not be in the
master database. When a user registers with that
e-mail address, it is recorded in the master database
and memcached. Suppose another user attempts to
create an account with the same e-mail address prior
to the update reaching the read-replica. In this case,
memcached will indicate that the e-mail address is
used and the lag has not caused any issues.

3.5 Checking For Existing Registra-
tions

The second user related detail that we needed to
address was the possibility that an existing user al-
ready registered for the race. Therefore, we needed
to do another FOR UPDATE database call on each reg-
istration to check this, again resulting in unwanted
database locks. We followed a similar read-replica
and cache approach for this, storing and updating
flags indicating whether or not a specific user regis-
tered for an event. Again, this limits the number of
accesses to the database and is safe despite the lag
present in read-replicas.

4 Additional Performance
Gains

While caching contributed to a large chunk of the
performance gains, other areas needed some atten-
tion to achieve our scalability goals. These included
queuing registration requests, optimizing SQL state-
ments, tuning the web servers, and tuning Linux TCP
parameters.

10

4.1 Database Queuing

With a target of 50,000 registration in 10 minutes,
that places a huge load on the database to actu-
ally save the registration. That averages out to 83
database connections a second, but it is more likely
that the initial minutes would be spend filling out
forms, meaning that over 1,000 connections a second
is by no means unrealistic. Therefore, the registra-
tion process was updated to queue registrations in-
stead of having each process save its own registration.
After a user’s payment is accepted by the payment
processor, their registration information is stored in
an SQS queue. This limits the number of database
connections that will be established.

Multiple background processes consume messages
from the queue to save the registrations to the
database and report registration IDs back to the user.
This also has the advantage of reducing the over-
head of database connections and allows for prepared
statements to be shared across multiple registrations.
The number of background processes is customizable,
with each server automatically spawning up to 10
processes to handle registrations. Each process reads
up to 10 messages from the queue at a time, which
further limits the number of processes spawned. All
this helps to reduce database contention and allows
the system to scale to large number of registrations.

4.2 Optimizing SQL Statements

By analyzing all of the SQL statements used on crit-
ical pages, we were able to identify statements that
could be optimized. Rewriting statements to do more
e�cient JOINs and adding indices to tables produced
a few benefits. It helped to reduce the reduce aver-
age page load times, particularly under high load.
This also reduced the load on the database, which
also helped other statements run faster under heavy
load since there was less contention. Furthermore,
some database statements were updated to use the
read-replica database if the statements could do so
without issues related to replica lag.

4.3 Tuning Nginx & Apache

By default, the Nginx version we were running used a
new, very strong SSL cipher that was very slow. The
Nginx configuration was updated to use a di↵erent
cipher that was much quicker, but still PCI compli-
ant [20]. On both the Nginx and Apache servers, the
configuration files were tuned to change the maxi-
mum number of requests served, update the socket
backlog, and enable compression, along with other
updates. Some of the key portions of the configura-
tion files for the Nginx load balancers and Apache
web servers can be seen in Appendix A.1 and Ap-
pendix A.2 respectively.

4.4 Linux TCP Tuning

With increasing demand on the site during testing,
we ran across web server connection issues and NAT
connectivity issues. We experimented with many
di↵erent settings, primarily focusing on the socket
backlog size, the number of Nginx worker processes,
and Linux TCP parameters. This tuning continued
throughout the entire load testing process. The final
settings that we found to be adequate for high load
are listed in Figure A.3 of Appendix A.

5 Building a Test Framework

In order to load test our infrastructure, we developed
a test framework with the following benefits:

It provided a consistent, automated, and repeat-
able way to run load tests against our system.

It rented large numbers of test servers to allow
for massive numbers of simulated registrations.

It kept track of previous tests to monitor
progress and compare results.

Used in conjunction with New Relic [21],
an infrastructure monitoring server, we were
able to profile slow transactions and pin-
point some bottlenecks that deserved more
attention. Portions of this code are avail-
able at https://github.com/RunSignUp-Team/
OpenSource/tree/master/loadTesting.

11

https://github.com/RunSignUp-Team/OpenSource/tree/master/loadTesting
https://github.com/RunSignUp-Team/OpenSource/tree/master/loadTesting

5.1 Simulating Registrations

The first part of this entailed being able to program-
matically simulate a registration. We looked into
multiple online cloud-based testing frameworks, but
decided they did not suit our needs and were too ex-
pensive. We needed something more functional than
Bees with Machine Guns [22] and more cloud native
than JMeter [23]. Since we needed a test framework
with session support and it was fairly simple to fulfill
our needs with a few custom PHP classes, we de-
cided to develop our own framework. We used PHP
and curl to create a class that simulated a session on
RunSignUp, including accepting cookies, simulating
user delays, outputting debugging information, and
loading resources needed on the web pages. Addi-
tionally, it implemented a simple browser cache using
the If-Modified-Since and If-None-Match HTTP
headers. Furthermore, it was capable of establishing
Keep-Alive connections for loading page resources.
However, it did not use persistent connections for the
page loads since real-world connections would typi-
cally expire between page loads. Lastly, it included
a function that was used to automatically fill in field
names such as name, address, credit card informa-
tion, etc. Another PHP class parsed the returned
HTML and produced a PHP DOMDocument [24]. It
also provided other functions to easily check for page
errors; get form fields; and get the URLs of images,
stylesheets, and JavaScript that should be loaded.

Using these base classes, we derived a class that
handled the logic involved in race registrations. The
class simulated a user registration by loading the
URL of the race page. From here, the code searched
the page for the link to sign up for the race. Once
the link was found, the URL was used to start the
registration. The code then entered a loop that pro-
cesses the current page to determine which action to
take next. This was done by simply checking for cer-
tain form elements that were unique to the di↵erent
pages. We implemented the code this way since the
registration process is not identical for all races. For
example, some races may enable teams, donations, or
stores while others may not.

When a registration was simulated, some informa-
tion was sent to another process that collects stats

that were used to display real-time data as a load test
was running. Furthermore, the framework stored the
raw HTML and curl connection information for each
page load. This information was analyzed after the
test to summarize the test and stored in S3 for later
manual evaluation.

5.2 User Interface

We designed a simple user interface, as shown in Fig-
ure 4, which allows quick setup of load tests. It gives
the option of registering for a particular event in the
race or having each simulated user randomly select
an event. The form includes the number of regis-
trations that should be simulated and delays that
should be simulated. These are specified in terms
of minimum and maximum times that are used to
randomly produce a delay. Using these parameters,
we can simulate the initial burst of people hitting the
website when registration opens, but allow for longer
delays between form submissions to accurately sim-
ulate people entering their information. There is a
setting to specify whether or not external resources,
such as images, stylesheets, and JavaScript, should
be loaded. The test only downloads resources from
the runsignup.com domain since we want to load test
our setup, not other proven external services such as
CloudFront and Google’s Hosted Libraries [25].
Furthermore, we have settings for the number of

web servers and test servers to use. The number of
web servers is just for future reference as new servers
will not be automatically started. However, the num-
ber of test servers determines how many test servers
the load test will use.
After submitting and confirming the test, the web-

site redirects to a page that shows the progress of
the test. When completed, the results of the test are
displayed along with graphs of the data, as shown in
Figure 5. Initially, only the gauges and bottom text
box are visible and update in real-time as the test
runs to display progress messages. A progress bar
is also shown and automatically updated during the
test. The page also has a comments section where we
can document things such as the exact infrastructure
setup, CPU usage information we gathered during
the test, changes that we ran the test to check, error

12

Figure 4: Setting up a registration load test.

analysis, or any other information we want to store
for later reference.

5.3 Background Load Test Process

When a load test is set up and submitted, a back-
ground process is spawned on the web server that
the request came in on. This background process
runs throughout the duration of the test to set up
and control the test servers and report data back to
the UI. Since this can be quite resource intensive as
the number of test servers increases, the script first
removes this web server from the server pool so no
requests are sent to it.
Next the script tries to start up enough test servers

to run the test. The test servers that we use are EC2
spot instances [26], which are EC2 instances that are
typically available at a lower price, but may be pre-
empted at any time if another EC2 customer bids a
higher amount. This allows us to get powerful test
servers for much cheaper. Furthermore, once an in-
stance is started, we pay by the hour, so an instance
is left running after the test in case it is needed again.
The next test that is done can use the same instances
to save money as well as setup time. There are cron
jobs that take care of shutting down the servers when

they approach the the start of a new hour. The cron
jobs simply uses the database to find servers that
should be shutdown, then uses SSH calls to shut down
each server.

Once the test servers are available, a setup script is
run to install the required packages (e.g. php), raise
kernel limits on the number of processes and open
files, and update other settings. The background pro-
cess then creates an archive of all the files that will
be needed on the test server for running the tests and

Figure 5: Setting up a registration load test.

13

analyzing the data. This archive is uploaded to S3
and a command is sent to each test server to down-
load the file and unpack the files.
When all of the setup of the servers is completed,

an initial registration is tested. There are two rea-
sons for doing this. First, it ensures that if there is
an issue that would prevent registration, such as reg-
istration being closed, we don’t waste time running
all the simulated users. Secondly, it allows the script
to figure out how many pages it took to complete the
registration. This data is then used during the test
to provide a fairly accurate progress bar.
After the initial test has successfully completed,

several cron jobs are set up on each test server. Each
cron job starts up to 25 PHP processes that will each
simulate a registration. By using multiple cron jobs,
more processes can be started in a shorter period of
time. Cron jobs also allow all of the NTP synced
test servers to start the test simultaneously. An ad-
ditional cron job is set up to collect statistics from
the PHP processes.
The background process running the load test now

just continuously requests data from the stats collec-
tors on each test server. This information is used to
update the gauges and progress bar in the UI. When
the test is completed, which can be determined by
looking at the stats, this is reported to the UI while
it requests each test server to analyze its data and
archive the raw HTML and logs to S3. The analyzed
data that was returned is then merged together and
stored in the database. This data is then sent to the
UI to build the graphs.
One piece of data that we generate is an estimated

hourly registration rate. This is a conservative es-
timate that takes the total number of registrations
and divides by the time from the first request to the
last registration completion. Assuming a continuous
stream of new users, the system could likely handle
a much higher load than is reported.

5.4 Open Source Framework

We intent to come back to the test framework we
developed and create a open source, general pur-
pose load testing tool. The major pieces of code
that went in to the load testing framework can be

found at https://github.com/RunSignUp-Team/
OpenSource.

6 Load Testing Results

We did two types of load tests on the system. The
primary focus was on scaling for surges in registra-
tions. The secondary focus was on scaling our results
capabilities.

6.1 Race Registrations

Listed in Table 2 are a few of the hundreds of load
tests that were performed on our infrastructure. The
first test is an easy test with only a few of the per-
formance updates to give a reference point for other
results. The other tests attempted to simulate a re-
alistic user experience, with simulated delays of 15-
60 seconds for filling out the forms. However, they
both required that all 30,000 or 50,000 registrations
started within the first 30 seconds of the test. During
this tra�c burst, there was a peak of 4,904 requests
per second for the 50,000 registrations test. With
45 web servers, this equates to about 109 requests
(all HTTPS) for each server. With an average re-
sponse time of around 1.5 seconds, this means that
each server would likely have an even larger number
of concurrent requests.
This explains why 45 web servers were needed. Af-

ter the initial burst, the load on each server was lower
and the average number of requests per second per
server became quite low. For example, the 50,000
registration test goes through 10 pages in 7 minutes
and 2 seconds to complete each registration. This is
500,000 page loads, averaging out to only about 26
page loads per second per server. However, the need
to handle the initial page burst necessitates the extra
capacity.
One also needs to take into account the redirect

that happens on 6 of the 10 page requests. The redi-
rect happens when the user submits a form POST
request. The initial POST request processes the in-
formation, then redirects to prevent the user from
submitting the same form twice. The redirected page
must then be requested from the user, resulting in

14

https://github.com/RunSignUp-Team/OpenSource
https://github.com/RunSignUp-Team/OpenSource

Figure 6: Registration per second during 50,000 user
test.

2 actual HTTP requests for each of these 6 pages.
Therefore, for are 16 HTTP requests per registration.
For the test with 50,000 registrations, this means
800,000 HTTP requests and an average of 42 HTTP
requests per second per server. While this is still low
compared to the initial burst, it is something that
needs to be considered when scaling the system.
During our testing, the system spiked at over 1,500

registration completing per second as seen in Fig-
ure 6. This figure shows the number of registrations
per second that reached the confirmation screen. The
jaggedness of this graph is due to the waiting screen
the user is on prior to reaching the confirmation
screen. This screen always waits at least 10 seconds
before checking if the registration is completed. The
waiting follows an exponential backo↵ pattern, with
the initial wait of 10 seconds, followed by a wait of 20
seconds if the registration did not complete, followed
by a 40 second wait, and any further wait times will
be 1 minute. This helps to limit page requests if the
database queue gets too backed up.
Table 3 shows a couple of tests on the typical daily

infrastructure described in Table 1. The delays are
set to simulate semi-realistic user interaction. As is
evident, the more modest infrastructure with smaller
servers struggles a little with the demand, with high
CPU load on the web servers. However, all other
servers in the infrastructure, including the load bal-
ancers, stayed below 10% CPU usage. This is a good
sign, since a couple extra web servers can be added
very quickly to handle the spike. This has poten-
tial to be completed automated since the process is
simple and not likely to run into issues that require

human intervention.

6.2 Viewing Race Results

With large races, the influx of runners wanting to
view their race results online can easily take down or
severely limit the functionality of the system. Our
system displays searchable results that are displayed
in pages, with 10 results per page by default. We also
have an auto-complete search box using AJAX. By
utilizing one or two database read replicas and setting
up short-lived items in the cache, we handled peaks
of over 3,000 result page requests per second. This in-
cludes both searches and normal results viewing and
is in addition to the simulated auto-completes, which
top out near 5,000 auto-completes a second.
Figure 7 shows the graph of the number of pages

per second experienced during a load test. The top
line shows the total across all pages. Our tests showed
sustained periods hovering around 2,000 result page
requests per second, which equates to 120,000 re-
quests per minute and over 7 million requests an
hour We also saw over 7,500 SSL requests per sec-
ond at some points during our testing. With 45 web
servers running, this equates to about 167 requests
per server.

7 Conclusions

Switching from a single server website to a cloud-
based, multi-server architecture with extensive
caching greatly improved the scalability of Run-
SignUp. We scaled from struggling to handle 1,000
registration bursts to handling 50,000 registrations
in under 10 minutes. Similar steps and methods can
be used to scale other websites as well. The key to
such a process is systematically finding and eliminat-
ing bottlenecks. Much of the time, the bottleneck is
a single database server. By implementing a caching
hierarchy using APC and memcached, the database
load can be greatly reduced. For write heavy op-
erations, queuing the tasks can provide huge ben-
efits by reducing database contention. The use of
IaaS and PaaS systems provided by Amazon Web
Services or similar services allows for scalability in a

15

No. Registrations 1,000 30,000 50,000

No. Load Balancers 2 (m1.large) 4 (m3.2xlarge) 6 (m3.2xlarge)
No. Web Servers 10 (m1.large) 25 (m3.2xlarge) 45 (m3.2xlarge)
Success Rate 94% 100% 100%
Test Duration 15:21 5:43 7:02
Avg. Response Time ⇠32 sec ⇠1 sec ⇠1.5 sec
Peak Req. Per Sec N/A N/A 4,904
Est. Hourly
Registrations

3,659 318,599 440,510

Table 2: Load Testing Results For Full Registration

No. Registrations 250 1,000

Page Submission Delay 5 - 10 sec 5 - 40 sec
Initial Page Delay 0 - 30 sec 0 - 120 sec
Success Rate 100% 100%
Test Duration 2:47 8:10
Avg. Response Time ⇠2.2 sec ⇠7.9 sec
Max. CPU Usage on Web
Servers

81.9% & 74.1% 86.2% & 86.4%

Max. Response Time 14.6 sec 45.9 sec
Peak Req. Per Sec 46 61
Est. Hourly
Registrations

6,522 7,347

Table 3: Load Testing Results For Full Registration On Typical Daily Infrastructure

16

Figure 7: Graph of Number of Page Requests per Second During Results Load Test

cost e↵ective way, which can be passed on to the cus-
tomer. Furthermore, it allows for a highly-available
system that is resilient to many network disruptions
and server failures. Lastly, having a test framework
and infrastructure monitoring software is extremely
beneficial to this process, helping bottlenecks to be
spotted quicker and changes to be tested without too
many other variables.

8 Thank You

We would like to thank Rich Friedman for his time
and advice in helping to develop our infrastructure
and caching framework.

References

[1] “Amazon Web Services.” http://aws.amazon.
com/.

[2] “Amazon Elastic Compute Cloud (Amazon
EC2).” http://aws.amazon.com/ec2/.

[3] “Amazon Virtual Private Cloud (Amazon
VPC).” http://aws.amazon.com/vpc/.

[4] “memcached - a distributed memory object
caching system.” http://memcached.org/.

[5] “PHP: APC - Manual.” http://php.net/
manual/en/book.apc.php.

[6] “Amazon Route 53.” http://aws.amazon.com/
route53/.

[7] “NGINX.” http://nginx.org/.

[8] P. Srisuresh and K. Egevang, “Traditional
IP Network Address Translator (Traditional
NAT).” RFC 3022 (Informational), Jan. 2001.

[9] “Apache HTTP Server Project.” http://
httpd.apache.org/.

[10] “Amazon Simple Email Service (Amazon SES).”
http://aws.amazon.com/ses/.

[11] “Amazon Simple Queue Service (Amazon
SQS).” http://aws.amazon.com/sqs/.

17

http://aws.amazon.com/
http://aws.amazon.com/
http://aws.amazon.com/ec2/
http://aws.amazon.com/vpc/
http://memcached.org/
http://php.net/manual/en/book.apc.php
http://php.net/manual/en/book.apc.php
http://aws.amazon.com/route53/
http://aws.amazon.com/route53/
http://nginx.org/
http://httpd.apache.org/
http://httpd.apache.org/
http://aws.amazon.com/ses/
http://aws.amazon.com/sqs/

[12] “Amazon Relational Database Service (Amazon
RDS).” http://aws.amazon.com/rds/.

[13] “Amazon Simple Storage Service (Amazon S3).”
http://aws.amazon.com/s3/.

[14] “Amazon CloudFront.” http://aws.amazon.
com/cloudfront/.

[15] “Github.” https://github.com/.

[16] “Amazon Simple Notification Service (Amazon
SNS).” http://aws.amazon.com/sns/.

[17] “Nagios.” http://www.nagios.org/.

[18] “Php: Overloading - manual.” http:
//php.net/manual/en/language.oop5.
overloading.php#object.call.

[19] “MySQL :: MySQL 5.0 Reference Manual ::
14.2.8.3 SELECT ... FOR UPDATE and SE-
LECT ... LOCK IN SHARE MODE Locking
Reads.” http://dev.mysql.com/doc/refman/
5.0/en/innodb-locking-reads.html.

[20] “O�cial PCI Security Standards Council Site.”
https://www.pcisecuritystandards.org/.

[21] “New Relic : Web Application Performance
Management (APM) & Monitoring.” http://
newrelic.com/.

[22] “Bees with Machine Guns.” https://github.
com/newsapps/beeswithmachineguns.

[23] “Apache JMetere.” http://jmeter.apache.
org/.

[24] “The DOMDocument class.” http://php.net/
manual/en/class.domdocument.php.

[25] “Google Hosted Libraries.” https://
developers.google.com/speed/libraries/
devguide.

[26] “Amazon EC2 Spot Instances.” http://aws.
amazon.com/ec2/spot-instances/.

18

http://aws.amazon.com/rds/
http://aws.amazon.com/s3/
http://aws.amazon.com/cloudfront/
http://aws.amazon.com/cloudfront/
https://github.com/
http://aws.amazon.com/sns/
http://www.nagios.org/
http://php.net/manual/en/language.oop5.overloading.php#object.call
http://php.net/manual/en/language.oop5.overloading.php#object.call
http://php.net/manual/en/language.oop5.overloading.php#object.call
http://dev.mysql.com/doc/refman/5.0/en/innodb-locking-reads.html
http://dev.mysql.com/doc/refman/5.0/en/innodb-locking-reads.html
https://www.pcisecuritystandards.org/
http://newrelic.com/
http://newrelic.com/
https://github.com/newsapps/beeswithmachineguns
https://github.com/newsapps/beeswithmachineguns
http://jmeter.apache.org/
http://jmeter.apache.org/
http://php.net/manual/en/class.domdocument.php
http://php.net/manual/en/class.domdocument.php
https://developers.google.com/speed/libraries/devguide
https://developers.google.com/speed/libraries/devguide
https://developers.google.com/speed/libraries/devguide
http://aws.amazon.com/ec2/spot-instances/
http://aws.amazon.com/ec2/spot-instances/

A Configuration Files

A.1 Key Configuration for Nginx Load Balancers.

worker_processes 64;
worker_rlimit_nofile 65536;

events {
worker_connections 16192;
multi_accept on;

}

http {
Buffer access log
access_log /var/log/nginx/access.log main buffer=64K;

Sendfile on
sendfile on;

15 second keep alives
keepalive_timeout 15;

Enable gzip compression
gzip on;

}

server {
listen 443 backlog=16384;

Set PCI complient ciphers
ssl_protocols SSLv3 TLSv1 TLSv1.1 TLSv1.2;
ssl_ciphers RC4:HIGH:!aNULL:!MD5:!kEDH;
ssl_prefer_server_ciphers on;

location / {
Enable HSTS
add_header Strict-Transport-Security max-age=15768000;

Set proxied headers
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

Proxy request
proxy_pass https://runsignup;

}
}

19

A.2 Key Apache Configuration for Web Servers

StartServers 75
MinSpareServers 50
MaxSpareServers 100
ServerLimit 256
MaxRequestWorkers 256
MaxConnectionsPerChild 4000
ListenBacklog 8192

A.3 Linux TCP Parameters for Nginx Load Balancers

net.ipv4.tcp_max_syn_backlog = 65536
net.ipv4.ip_local_port_range = 2048 64000
net.core.somaxconn = 65536
net.ipv4.ip_conntrack_max = 262144
net.nf_conntrack_max = 262144
net.netfilter.nf_conntrack_max = 1048576
net.core.netdev_max_backlog = 4000
net.ipv4.tcp_max_tw_buckets = 1048576

20

B Code

1 <?php
2

3 pub l i c func t i on c a l l (method , params)
4 {
5 // Check i f t h i s i s a mysq l i method

6 s t a t i c mysqliMethods = nu l l ;
7 i f (mysqliMethods == nu l l)
8 mysqliMethods = ge t c l a s s methods (’ mysql i ’) ;
9 i f (in array (method , mysqliMethods))

10 {
11 // Set up MySQLi

12 i f (! th i s�>mysql i)
13 th i s�>setupMySQLi () ;
14

15 // Ca l l f unc t i on

16 r e turn call user func array (array (th i s�>mysqli , method) , params) ;
17 }
18

19 // Try to f i nd the method in the modules

20 foreach (th i s�>modules as & mod)
21 {
22 // Check i f the method e x i s t s

23 i f (method exists (mod , method))
24 // return ca l l u s e r me thod ar ray (method , mod , params) ;

25 r e turn call user func array (array (mod , method) , params) ;
26 }
27

28 // Raise error

29 t ra ce = debug backtrace () ;
30 trigger error (
31 ’ Undefined method ’ . method ,
32 E USER NOTICE) ;
33 r e turn nu l l ;
34 }
35

36 ?>

Listing 1: Deferred database connections and external module loading in RunSignUp database wrapper.

21

	Migrating to a Multi-Server Infrastructure using EC2
	Caching Basics
	Domain Name Lookup - Route 53
	Load Balancing - Nginx & NAT
	Web Servers - Apache & PHP
	Session Memcached
	Data Memcached
	Sending E-mail in Amazon Web Services - SES & SQS
	MySQL Database - RDS
	Serving Static Resources - S3 & CloudFront
	Generating the Static Resource Map

	Deployment
	Typical Server Setup
	Server Management
	Load Balancers
	Web Servers
	Memcached Servers

	Availability
	Load Balancers
	Web Servers
	Memcached Servers
	Session Storage
	Database
	Amazon's High-Availability Services

	Performance Via Caching
	Caching Framework
	Caching Race Information
	Caching Registration Related Information
	Checking E-mail Address on New Accounts
	Checking For Existing Registrations

	Additional Performance Gains
	Database Queuing
	Optimizing SQL Statements
	Tuning Nginx & Apache
	Linux TCP Tuning

	Building a Test Framework
	Simulating Registrations
	User Interface
	Background Load Test Process
	Open Source Framework

	Load Testing Results
	Race Registrations
	Viewing Race Results

	Conclusions
	Thank You
	Configuration Files
	Key Configuration for Nginx Load Balancers.
	Key Apache Configuration for Web Servers
	Linux TCP Parameters for Nginx Load Balancers

	Code

